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Introduction and motivation

This book concerns making inferences about causal effects based on
observational data using genetic variants as instrumental variables, a concept
known as Mendelian randomization. In this chapter, we introduce the basic
idea of Mendelian randomization, giving examples of when the approach can
be used and why it may be useful. We aim in this chapter only to give a flavour
of the approach; details about its conditions and requirements are reserved for
later chapters. Although the examples given in this book are mainly in the
context of epidemiology, Mendelian randomization can address questions in
a variety of fields of study, and the majority of the material in this book is
equally relevant to problems in different research areas.

1.1 Shortcomings of classical epidemiology

Epidemiology is the study of patterns of health and disease at the population
level. We use the term ‘classical epidemiology’, meaning epidemiology without
the use of genetics, to contrast with genetic epidemiology. A fundamental
problem in epidemiological research, in common with other areas of social
science, is the distinction between correlation and causation. If we want to
address important medical questions, such as to determine disease aetiology
(what is the cause of a disease?), to assess the impact of a medical or public
health intervention (what would be the result of a treatment?), to inform
public policy, to prioritize healthcare resources, to advise clinical practice, or to
counsel on the impact of lifestyle choices, then we have to answer questions of
cause and effect. The optimal way to address these questions is by appropriate
study design, such as the use of prospective randomized trials.

1.1.1 Randomized trials and observational studies

The gold standard for the empirical testing of a scientific hypothesis in
clinical research is a randomized controlled trial. This design involves the
assignment of different treatment regimes at random to experimental units
(usually individuals) in a population. In its simplest form, an active treatment
(for example, intervention on a risk factor) is compared against a control
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treatment (no intervention), and the average outcomes in each of the arms of
the trial are contrasted. We will often refer to the putative causal risk factor
as the ‘exposure’ variable. We seek to assess whether the exposure is a cause of
the outcome, and estimate (if appropriate) the magnitude of the causal effect.

While randomized trials are in principle the best way of determining the
causal status of a particular exposure, they have some limitations. Randomized
trials are expensive and time-consuming, especially when the outcome is rare
or requires a long follow-up period to be observed. Additionally, in some cases,
a targeted treatment which has an effect only on the exposure of interest may
not be available. Moreover, many exposures cannot be randomly allocated for
practical or ethical reasons. For example, in assessing the impact of drinking
red wine on the risk of coronary heart disease, it would not be feasible to
recruit participants to be randomly assigned to either drink or abstain from
red wine over, say, a 30-year period. Alternative approaches for judging causal
relationships are required.

Scientific hypotheses are often assessed using observational data. Rather
than by intervening on the exposure, individuals with high and low levels of
the exposure are compared. In many cases, differences between the average
outcomes in the two groups have been interpreted as evidence for the causal
role of the exposure. However, such a conclusion confuses correlation with
causation. There are many reasons why individuals with elevated levels of
the exposure may have greater average outcome levels, without the exposure
being a causal agent.

Interpreting an association between an exposure and a disease outcome in
observational data as a causal relationship relies on untestable and usually
implausible assumptions, such as the absence of unmeasured confounding
(see Chapter 2) and of reverse causation. This has led to several high-profile
cases where an exposure has been widely promoted as an important factor in
disease prevention based on observational data, only to be later discredited
when evidence from randomized trials did not support a causal interpretation
[Taubes and Mann, 1995]. For example, observational studies reported a
strong inverse association between vitamin C and risk of coronary heart
disease, which did not attenuate on adjustment for a variety of alternative
risk factors [Khaw et al., 2001]. However, experimental data results obtained
from randomized trials showed a non-significant association in the opposite
direction [Collins et al., 2002]. The confidence interval for the observational
association did not include the randomized trial estimate [Davey Smith and
Ebrahim, 2003]. Similar stories apply to the observational and experimental
associations between β-carotene and smoking-related cancers [Peto et al.,
1981; Hennekens et al., 1996], and between vitamin E and coronary heart
disease [Hooper et al., 2001]. More worrying is the history of hormone-
replacement therapy, which was previously advocated as being beneficial for
the reduction of breast cancer and cardiovascular mortality on the basis
of observational data, but was subsequently shown to increase mortality in
randomized trials [Rossouw et al., 2002; Beral et al., 2003]. More reliable
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approaches are therefore needed for assessing causal relationships using
observational data. Mendelian randomization is one such approach.

1.2 The rise of genetic epidemiology

Genetic epidemiology is the study of the role of genetic factors in health and
disease for populations. We sketch the history and development of genetic
epidemiology, indicating why it is an important area of epidemiological and
scientific research.

1.2.1 Historical background

Although the inheritance of characteristics from one generation to the next
has been observed for millennia, the mechanism for inheritance was long
unknown. When Charles Darwin first proposed his theory of evolution in
1859, one of its major problems was the lack of an underlying mechanism
for heredity [Darwin, 1871]. Gregor Mendel in 1866 proposed two laws
of inheritance: the law of segregation, that when any individual produces
gametes (sex cells), the two copies of a gene separate so that each gamete
receives only one copy; and the law of independent assortment, that “unlinked
or distantly linked segregating gene pairs assort independently at meiosis
[cell division]” [Mendel, 1866]. These laws are summarized by the term
‘Mendelian inheritance’, and it is this which gives Mendelian randomization
its name [Davey Smith and Ebrahim, 2003]. The two areas of evolution and
Mendelian inheritance were brought together through the 1910s-30s in the
‘modern evolutionary synthesis’, by amongst others Ronald Fisher, who helped
to develop population genetics [Fisher, 1918]. A direct connection between
genetics and disease was established by Linus Pauling in 1949, who linked a
specific genetic mutation in patients with sickle-cell anaemia to a change in
the haemoglobin of the red-blood cells [Pauling et al., 1949]. The discovery of
the structure of deoxyribonucleic acid (DNA) in 1953 gave rise to the birth
of molecular biology, which led to greater understanding of the genetic code
[Watson and Crick, 1953]. The Human Genome Project was established in
1990, leading to the publication of the entirety of the human genetic code
by the early 2000s [Roberts et al., 2001; McPherson et al., 2001]. Recently,
technological advances have reduced the cost of DNA sequencing to the level
where it is now economically viable to measure genetic information for a large
number of individuals [Shendure and Ji, 2008].



6 Mendelian Randomization

1.2.2 Genetics and disease

As the knowledge of the human genome has developed, the search for genetic
determinants of disease has expanded from monogenic disorders (disorders
which are due to a single mutated gene, such as sickle-cell anaemia), to
polygenic and multifactorial disorders, where the burden of disease risk is
not due to a single gene, but to multiple genes combined with lifestyle and
environmental factors. These diseases, such as cancers, diabetes, and coronary
heart disease, tend to cluster within families, but also depend on modifiable
risk factors, such as diet and blood pressure. Several genetic factors have
been found which relate to these diseases, especially through the increased
use of genome-wide association studies (GWAS), in which the associations
of hundreds of thousands or even millions of genetic variants with a disease
outcome are tested. In some cases, these discoveries have added to the scientific
understanding of disease processes and the ability to predict disease risk for
individuals. Nevertheless, they are of limited immediate interest from a clinical
perspective, as an individual’s genome cannot currently be changed. However,
genetic discoveries provide opportunities for Mendelian randomization: a
technique for using genetic data to assess and estimate causal effects of
modifiable non-genetic exposures based on observational data.

1.3 Motivating example: The inflammation hypothesis

We introduce the approach of Mendelian randomization using an example.
The inflammation hypothesis is an important question in the understanding of
cardiovascular disease. Inflammation is one of the body’s response mechanisms
to a harmful stimulus. It is characterized by redness, swelling, heat, pain and
loss of function in the affected body area. Cases can be divided into acute
inflammation, which refers to the initial response of the body, and chronic
inflammation, which refers to more prolonged changes. Examples of conditions
classified as inflammation include appendicitis, chilblains, and arthritis.

Cardiovascular disease is a term covering a range of diseases including
coronary heart disease (in particular myocardial infarction or a ‘heart attack’)
and stroke. It is currently the biggest cause of death worldwide. The
inflammation hypothesis states that there is some aspect of the inflammation
response mechanism which leads to cardiovascular disease events, and that
intervening on this pathway will reduce the risk of cardiovascular disease.

1.3.1 C-reactive protein and coronary heart disease

As part of the inflammation process, several chemicals are produced by the
body, known as (positive) acute-phase proteins. These represent the body’s
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first line of defence against infection and injury. There has been particular
interest in one of these, C-reactive protein (CRP), and the role of elevated
levels of CRP in the risk of coronary heart disease (CHD). It is known that
CRP is observationally associated with the risk of CHD [Kaptoge et al.,
2010], but, prior to robust Mendelian randomization studies, it was not known
whether this association was causal [Danesh and Pepys, 2009]. The specific
question in this example (a small part of the wider inflammation hypothesis)
is whether long-term elevated levels of CRP lead to greater risk of CHD.

1.3.2 Alternative explanations for association

In our example, there are many factors that increase both levels of CRP
and the risk of CHD. These factors, known as confounders, may be measured
and accounted for by statistical analysis, for instance multivariable regression.
However, it is not possible to know whether all such factors have been
identified. Also, CRP levels increase in response to sub-clinical disease, giving
the possibility that the observed association is due to reverse causation.

One of the potential confounders of particular interest is fibrinogen, a
soluble blood plasma glycoprotein, which enables blood-clotting. It is also
part of the inflammation pathway. Although CRP is observationally positively
associated with CHD risk, this association was shown to reduce on adjustment
for various conventional risk factors (such as age, sex, body mass index, and
diabetes status), and to attenuate to near null on further adjustment for
fibrinogen [Kaptoge et al., 2010]. It is important to assess whether elevated
levels of CRP are causally related to changes in fibrinogen, since if so
conditioning the CRP–CHD association on fibrinogen would represent an over-
adjustment, which would attenuate a true causal effect.

1.3.3 Instrumental variables

To address the problems of confounding and reverse causation in conventional
epidemiology, we introduce the concept of an instrumental variable. An
instrumental variable is a measurable quantity (a variable) which is associated
with the exposure of interest, but not associated with any other competing
risk factor that is a confounder for the outcome. Neither does it influence the
outcome directly, but only potentially indirectly via the hypothesized causal
pathway through the exposure under investigation. A potential example of an
instrumental variable for health outcomes is geographic location. We imagine
that two neighbouring regions have different policies on how to treat patients,
and assume that patients who live on one side of the border are similar
in all respects to those on the other side of the border, except that they
receive different treatment regimes. By comparing these groups of patients,
geographic location acts like the random allocation to treatment assignment
in a randomized controlled trial, influencing the exposure of interest without
being associated with competing risk factors. It therefore is an instrumental
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variable, and gives rise to a natural experiment in the population, from which
causal inferences can be obtained. Other plausible non-genetic instrumental
variables include government policy changes (for example, the introduction
of a smoking ban in public places, or an increase in cigarette tax, which
might decrease cigarette smoking prevalence without changing other variables)
and physician prescribing preference (for example, the treatment a doctor
chose to prescribe to the previous patient, which will be representative of
the doctor’s preferred treatment, but should not be affected by the current
patient’s personal characteristics or case history).

1.3.4 Genetic variants as instrumental variables

A genetic variant is a section of genetic code that differs between individuals.
In Mendelian randomization, genetic variants are used as instrumental
variables. Individuals in a population can be divided into subgroups based
on their genetic variants. On the assumption that the genetic variants can be
treated as if they have been randomly distributed in the population (by this,
we mean that they are independent of environmental and other variables),
then these genetic subgroups do not systematically differ with respect to any
of these variables. Additionally, as the genetic code for each individual is
determined before birth, there is no way that a variable measured in a mature
individual can causally precede a genetic variant. Returning to our example,
if we can find a suitable genetic variant (or variants) associated with CRP
levels, then we can compare the genetically-defined subgroup of individuals
with lower average levels of CRP to the subgroup with higher average levels
of CRP. In effect, we are exploiting a natural experiment in the population,
whereby nature has randomly given some individuals a genetic ‘treatment’
which increases their CRP levels. If individuals with a genetic variant that is
associated with elevated average levels of CRP and satisfies the instrumental
variable assumptions exhibit greater incidence of CHD, then we can conclude
that CRP is a causal risk factor for CHD, and that lowering CRP is likely
to lead to reductions in CHD rates. Under further assumptions about the
statistical model for the relationship between CRP and CHD risk, a causal
parameter can be estimated. Although Mendelian randomization uses genetic
variants to answer inferential questions, these are not questions about genetics,
but rather about modifiable exposures, such as CRP, and their causal effects
on outcomes (usually disease outcomes).

1.3.5 Violations of instrumental variable assumptions

It is impossible to test whether there is a causal relationship between two
variables on the basis of observational data alone. All empirical methods
for making causal claims by necessity rely on untestable assumptions.
Instrumental variable methods are no exception. Taking the example of
Section 1.3.3, if geographic location is associated with other factors, such
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as socioeconomic status, then the assumption that the distribution of the
outcome would be the same for both populations under each policy regime
would be violated. Or if the genetic variant(s) associated with CRP levels used
in a Mendelian randomization analysis were also independently associated
with, say, blood pressure, the comparison of genetic subgroups would not be
a valid test for the causal hypothesis that CRP affects CHD risk. The validity
of the instrumental variable assumptions is crucial to the interpretation of
a Mendelian randomization investigation, and is discussed at length in later
chapters.

1.4 Other examples of Mendelian randomization

Although the initial applications of Mendelian randomization were in the
field of epidemiology [Youngman et al., 2000], the use of genetic instrumental
variables is becoming widespread in a number of different fields. A systematic
review of applied Mendelian randomization studies was published in 2010
[Bochud and Rousson, 2010]. A list of the exposures and outcomes of some
causal relationships which have been assessed using Mendelian randomization
is given in Table 1.1. The list includes examples with a wide range of exposure
and outcome variables in epidemiology, psychology, and social science: the only
limitation in the use of Mendelian randomization to assess the causal effect of
an exposure on an outcome is the availability of a suitable genetic variant to
use as the instrumental variable.

The reasons to use Mendelian randomization outside of epidemiology are
similar to those in epidemiology. In many fields, randomized experiments are
difficult to perform and instrumental variable techniques represent one of the
few ways of assessing causal relationships in the absence of complete knowledge
of confounders.

1.5 Overview of book

Although there has been much research into the use of instrumental
variables in econometrics and epidemiology since they were first proposed
[Wright, 1928], several barriers existed in applying this to the context of
Mendelian randomization. These include differences in terminology, where
the same concept is referred to in various disciplines by different names, and
differences in theoretical concepts, particularly relating to the definition and
interpretation of causal relationships. Additionally, several methodological
issues have been raised by the use of genetic variants as instrumental
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Category Exposure Outcome Reference

Biomarker

fibrinogen CHD [1]
CRP CIMT [2]
SHBG type 2 diabetes [3]

lipoprotein(a) myocardial infarction [4–5]
homocysteine stroke [6]

lipids AMD [7]
inflammatory markers depression [8]

serum urate CHD [9]
serum calcium CHD [10]

Complex
risk factor

BMI breast cancer [11]
blood pressure valvular heart disease [12]

resting heart rate CHD [13]
education Alzheimer’s disease [14]
myopia educational attainment [15]

age at puberty asthma [16]

Dietary /
lifestyle factor

vitamin D multiple sclerosis [17]
cannabis initiation schizophrenia [18]

alcohol intake blood pressure [19]
caffeine intake stillbirth [20]
milk intake metabolic syndrome [21]
foetal alcohol intelligence quotient (IQ) [22]

TABLE 1.1
Examples of causal relationships assessed by Mendelian randomization in
applied research.

Abbreviations:
CHD = coronary heart disease, CRP = C-reactive protein, CIMT = carotid intima-
media thickness, SHBG = sex-hormone binging globulin, AMD = age-related macular
degeneration, BMI = body mass index.

References:
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3. Ding et al., 2009,
4. Kamstrup et al., 2009,
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7. Burgess and Davey Smith, 2017,
8. Khandaker et al., 2020,
9. White et al., 2015,
10. Larsson et al., 2017a,
11. Guo et al., 2017,

12. Nazarzadeh et al., 2019,
13. Eppinga et al., 2016
14. Larsson et al., 2017b,
15. Mountjoy et al., 2018,
16. Minelli et al., 2018,
17. Mokry et al., 2015
18. Gage et al., 2017,
19. Chen et al., 2008,
20. Bech et al., 2006,
21. Almon et al., 2010,
22. Lewis et al., 2012.
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variables that had not previously been considered in the instrumental variables
literature, and required (and still require) methodological development. A
major motivation in writing this book is to provide an accessible resource to
those coming from different academic disciplines to understand issues relevant
to the use of genetic variants as instrumental variables, particularly for those
wanting to undertake and interpret Mendelian randomization analyses.

1.5.1 Structure

This book is divided into three parts. The first part, comprising Chapters
1 to 6, is titled “Understanding and performing Mendelian randomization”.
This part contains the essential information for a practitioner interested in
Mendelian randomization (Chapters 1 and 2), including definitions of causal
effects and instrumental variables (Chapter 3), and methods for the estimation
of causal effects using individual-level data (Chapter 4) and summarized
data (Chapter 5). Also addressed is the question of how to interpret a
Mendelian randomization estimate, and how it may compare to the effect of an
intervention on the exposure of interest in practice (Chapter 6). These sections
should be fully accessible to most epidemiologists and other researchers
with some training in quantitative data analysis, but should not need a
mathematical background to understand. While we have provided technical
details, these are not essential to the understanding of the concepts, and can
generally be glossed over by the less technical reader.

The second part, comprising Chapters 7 to 10, is titled “Advanced methods
for Mendelian randomization”. In many cases, Mendelian randomization
analyses using different genetic variants as instrumental variables lead to
causal estimates which differ to the extent that they are not mutually
compatible. This typically means that not all of those variants satisfy the
instrumental variable assumptions. Robust methods have been developed
that are able to consistently estimate a causal parameter under weaker
assumptions. In Chapter 7, we describe all commonly-used robust methods.
In Chapter 8, we present matters concerning the behaviour of instrumental
variable estimates, such as their statistical properties and potential sources
of bias. In Chapter 9, we consider extensions to the basic Mendelian
randomization paradigm. Chapter 10 provides a practical overview of how
to perform a Mendelian randomization investigation, from the motivation
and conceptualization of the research question, through to the interpretation
of results. Although some of the details in this part of the book require a
greater depth of mathematical understanding, each concept is introduced and
described using non-technical language as far as possible.

Finally in Chapter 11, we conclude by discussing current and future
directions for research involving Mendelian randomization.
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1.6 Summary

Distinguishing between a factor which is merely associated with an outcome
and one which has a causal effect on the outcome is problematic outside of
the context of a randomized controlled trial. Instrumental variables provide
a way of assessing causal relationships in observational data, and Mendelian
randomization is the use of genetic variants as instrumental variables.

In the next chapter, we provide more detail of what Mendelian
randomization is, and when and why it may be useful.


